S ep 2 01 4 DIAGRAM AUTOMORPHISMS OF QUIVER VARIETIES
نویسنده
چکیده
We show that the fixed-point subvariety of a Nakajima quiver variety under a diagram automorphism is a disconnected union of quiver varieties for the ‘split-quotient quiver’ introduced by Reiten and Riedtmann. As a special case, quiver varieties of type D arise as the connected components of fixed-point subvarieties of diagram involutions of quiver varieties of type A. In the case where the quiver varieties of type A correspond to small self-dual representations, we show that the diagram involutions coincide with classical involutions of two-row Slodowy varieties. It follows that certain quiver varieties of type D are isomorphic to Slodowy varieties for orthogonal or symplectic Lie algebras.
منابع مشابه
Group Actions on Quiver Varieties and Applications
We study algebraic actions of finite groups of quiver automorphisms on moduli spaces of quiver representations. We decompose the fixed loci using group cohomology and we give a modular interpretation of each component. As an application, we construct branes in hyperkähler quiver varieties, as fixed loci of such actions.
متن کاملA Geometric Construction of Crystal Graphs Using Quiver Varieties: Extension to the Non-simply Laced Case
We consider a generalization of the quiver varieties of Lusztig and Nakajima to the case of all symmetrizable Kac-Moody Lie algebras. To deal with the non-simply laced case one considers admissible automorphisms of a quiver and the irreducible components of the quiver varieties fixed by this automorphism. We define a crystal structure on these irreducible components and show that the crystals o...
متن کاملProblems on Quiver Varieties
(1) Study the class of hyper-Kähler manifolds which are hyper-Kähler reductions of finite dimensional quaternion vector spaces by products of unitary groups. (Probably it is better to assume that the action is linear.) Besides quiver varieties, hyper-Kähler toric varieties in the sense of Bielawski and Dancer [2] are such examples. When the quotients are nonsingular ? How much of geometric prop...
متن کاملQuiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac–Moody Algebras, and Painlevé Equations
To a finite quiver equipped with a positive integer on each of its vertices, we associate a holomorphic symplectic manifold having some parameters. This coincides with Nakajima’s quiver variety with no stability parameter/framing if the integers attached on the vertices are all equal to one. The construction of reflection functors for quiver varieties are generalized to our case, in which these...
متن کامل0 Quiver Varieties of Type A
We prove a conjecture of Nakajima describing the relation between the geometry of quiver varieties of type A and the geometry of the partial flags varieties and of the nilpotent variety. The kind of quiver varieties we are interested in, have been introduced by Nakajima as a generalization of the description of the moduli space of anti-self-dual connections on ALE spaces constructed by Kronehei...
متن کامل